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Abstract. This paper investigates novel computational design method for in-
�nitesimally and �nitely foldable rigid origami based on solving a �rst-order folding
mode, which can be represented by a reciprocal �gure. We derive these graphical
conditions from a matrix representation of rigid origami, and extendthe condi-
tions to cases when the surface includes holes. We propose an algorithm to obtain
forms that satisfy the conditions and an interactive system to freely design in-
�nitesimally foldable forms. We show design examples of shaky polyhedron and
origami, and �nitely foldable quadrivalent mesh origami.
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1. Introduction

Rigid origami is a polyhedral origami modeled using rigid panels and rotational hinges. The
designs of mechanisms and the structures based on the kinematic property of rigid origami are
interesting topics in the �eld of origami engineering, since they can facilitate applications of
deployable structures and 
exible meta-material at di�erent scales, e.g., from medical devices
inside the human body to architectural and space structures. From a theoretical viewpoint,
rigid origami structures are especially interesting when they acquire 
exibility from redundant
mechanical constraints based on their non-trivial singular geometric con�guration, such as

exible closed polyhedra and rigid-foldable quadrivalent mesh origamistructures. In designs
using rigid origami mechanisms, such redundancies can be used for removing a part of the
structure without disturbing the mechanism or combining multiple compatible parts to form
more complex and robust structures.

In�nitesimal and �nite kinematic properties of polyhedral surfaces have been studied the-
oretically and have also been associated with reciprocal �gures in 3D, speci�cally reciprocal-
parallel, by Sauer [6] for quadrangle meshes.Schief et al. [7] studied reciprocal �gures that
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Figure 1: Contraction of a closed loop. This also implies that a non-simply
connected surface requires additional treatment.

also have second-order 
exibility. Redundant �nite mechanisms have been studied as well,
e.g., 
exibility of closed polyhedra [3] and 
exibility of quad panel meshes [7, 9, 8]. Despite
these theoretical studies, design methods of such structures are limited. A computational sys-
tem for bi-directionally 
at-foldable quad mesh origami [9] facilitatesinteractive form�nding
of �nitely foldable rigid origami structures with redundant constraints. The drawback of this
method is that the system relies on the existence of a valid state in a half-folded form.

In this paper, we propose a novel design method for obtaining in�nitesimally and �nitely
transformable origami and polyhedral surfaces by developing an interactive design system that
solves the condition of the existence of an in�nitesimal folding mode,which can be graphically
represented by a reciprocal �gure.

In Section 2, we derive the in�nitesimal 
exibility conditions for disk meshes equivalent
to existing results [6, 7], using a matrix representation of transformation. Next we naturally
extend the conditions to the case of a disk with holes by distinguishingconditions around each
hole. In Section 3, we propose a computational method for obtaining a valid con�guration and
a reciprocal �gure. We �rst obtain an initial con�guration based on optimization and use the
same system to explore possible solutions by projecting perturbation in the solution space.
Using the system, we can obtain design variations of in�nitesimally foldable closed polyhedron,
as shown in Section 4. In Section 5, we apply a second-order 
exibilitycondition represented
by reciprocal �gure to a bi-directionally 
at-foldable quadrivalent 2D crease pattern. Despite
the lack of a proof, we observed that this condition yields �nitely rigid-foldable origami
patterns. One of the results is \curved rigid origami", which is a discretization of the curved
folding that acts as a one-degree-of-freedom (1-DOF) mechanism.

2. In�nitesimal folding mode and reciprocal �gure

A rigid origami structure comprises rigid panels and hinge joints at the foldlines, and can be
modeled like a robot arm; however it has many closed loops. The constraints of its overall
mechanism can be described using matrix equations as in [4, 2], which are redundantly given
for any possible sequence of foldlines forming a closed-loop strip. Here, we will focus only on
the kinematics and ignore self-collision.

In the case of a rigid origami model that is homeomorphic to a disk, it issu�cient
to consider only the constraints resulting from the closed facetedfan around each interior
vertex. This is because any loop condition decompose into a contracted loop condition and
an interior vertex condition, which further decomposes into multipleinterior vertex conditions
after several iterations (Fig. 1). This implies that this condition is su�ciently applicable to a
simply connected 2-manifold.
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Figure 2: Rotation around a fan.

Single-vertex constraint The constraint along the fan around an interior vertex is de-
scribed as follows. Let the fold angle of the vertex's incident foldlinei be denoted by� i and
the angle between adjacent foldlinesi and i +1 be denoted by� i;i +1 . Here, note that there are
n incident foldlines incrementally numbered counterclockwise, and their index is numbered in
modulo n. Then, the rotation by foldline i is described by a 3� 3 matrix � i � 1;i , which trans-
forms the local coordinate of a faceti � 1; i to that of facet i; i + 1. Let the local coordinate
of facet i � 1; i have its x and z axes along the foldline and the facet's normal, respectively.
� i � 1;i is represented as the sequence of a pitch and then yaw (Fig. 2).

� i � 1;i = Y i � 1;i P i =

2

4
cos� i � 1;i � sin� i � 1;i 0
sin� i � 1;i cos� i � 1;i 0

0 0 1

3

5

2

4
1 0 0
0 cos� i � sin � i

0 sin� i cos� i

3

5 : (1)

In order to maintain consistency as a closed fan, sequentially applying the rotations around
the closed loop must transform the orientation of the �rst facet,i.e., 0; 1 to be identical to its
original orientation.

R (� 0; � � � ; � n� 1) = � 0;1� 1;2 � � � � n� 1;0 = I : (2)

In�nitesimal motion The derivative of the constraint with respect to� i is calculated as
follows. De�ne an orthogonal matrixT i representing the orientation of the faceti; i + 1 with
respect to the facet 0; 1 as

T i = � 0;1 � � � � i � 1;i =
�
L i M i N i

�
=

2

4
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i M x
i N x

i

L y
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L z
i M z

i N z
i

3

5 ;

where L i is the direction vector of edgei and N i is the normal of faceti; i + 1 with respect
to the local coordinate system whosex and z axes orient the direction of foldline 0 and the
normal of facet 0; 1. Then, Eq. (2) is written asR =

�
T i

� �
T i

� T
= I : By using

@�i � 1;i
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= ( Y i � 1;i P i ) P � 1
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we obtain the derivative of Eq. (2) as
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Figure 3: Left: A foldline network. Right: A reciprocal �gure of the foldline network.
The illustration shows the planar case with zero signed area (Section2.2).

The constraints can be written using three independent equations:

f =

2

4
R(2; 3)
R(3; 1)
R(1; 2)

3

5 = 0: (4)

The in�nitesimal folding motion (� � 1; � � � ; � � n ) satis�es

n� 1X

i =0

@f
@�i

� � i =
n� 1X

i =0

L i � � i = 0: (5)

Here, L i is the normalized direction vector of edgei from a vertex to the adjacent vertex in
the local coordinate system of facet 0; 1.

Now, we consider the global system given by the intersection of theconstraints from each
interior vertex. We denote the position of vertexv (v = 1; � � � ; V) by xv, and the rotation
along the foldline incident to vertexu and v by � u;v = � v;u or � e (e = 1; � � � ; E in), where V
and E in are the numbers of total vertices and fold lines respectively. For later convenience,
we let 1; � � � ; Vin be the interior vertices andVin + 1; � � � ; V be the exterior vertices, whereVin

is the number of interior vertices.
We apply a rotation T u to Eq. (5) so that for any edgeu; v, L 0

u;v = T uL u;v is the direction

vector of the edge in the global coordinate system, i.e.,@f 0
u

@�u;v
= L 0

u;v = ( xu � xv) =kxu � xvk.

The in�nitesimal folding motion satis�es, for each interior vertex v = 1; : : : ; Vin ,

X

u adjacent to v

(xu � xv)
kxu � xvk

� � u;v = 0: (6)

Reciprocal �gure This equation is equivalent to an equilibrium condition when �� u;v

is replaced by the axial force applied to the lines. As in the �eld of graphical statics where
reciprocal �gures have been used to solve an equilibrium of a 2D frameworks [5, 1], we consider
a 3D reciprocal �gure of origami foldlines.

Because we are interested in a 3D reciprocal �gure, we consider reciprocal �gures to be the
dual graph of a foldline network in 3D space whose corresponding edges are parallel (instead
of perpendicular), i.e., \reciprocal-parallel" as de�ned bySauer [6]. The dual graph is
constructible because the origami surface is a manifold; and the interior vertex, foldlines, and
facets of the polyhedral surface correspond to polygons, segments, and nodes, respectively.
Here, note that we use only foldlines (edges between facets) but not boundary edges (Fig. 3).
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Figure 4: Rotation around a hole.

Theorem 1 (Schief et al. [7]). The existence of a (non-degenerate) reciprocal �gure of the
foldline network of a rigid origami structure homeomorphicto a disk is equivalent to the
existence of a �rst-order folding mode of the rigid origami structure.

Proof: Assume that a valid �rst order folding motion exists. Then, we construct a dual
graph of the foldline network such that the node coordinatex0

f is the angular velocity of the
corresponding facetf . For each adjacent pair of facetsf and g and the foldline u; v between

them, x0
f � x0

g = (xu � xv )
kxu � xv k

� � u;v ; thus, the graph is a reciprocal �gure of the foldline network.

Similarly, assume that a reciprocal �gure of the foldline network exists, in which the
coordinate of the node corresponding to facetf is denoted byx0

f . Then, we let the angular
speed of each foldlineu; v between facetsf and g be kx0

f � x0
gk. This set of angular speeds of

follines satis�es Eq. (6), thereby representing a valid in�nitesimal folding motion.

2.1. Surface with holes

Non-disk origami, or speci�cally non-simply connected origami, e.g., cylindrical origami or
origami with holes, is often applied to obtain collapsible structures. The in�nitesimal folding
mode of an origami structure with holes can be represented by theintersection of constraints
around each interior vertex and additional constraints for the loop around each hole. Unlike
the constraint around a vertex, there are six constraints around a loop, which correspond to
rotation and translation.

Similar to a single vertex, we represent transformation by matrices, but in this case, we use
a 4� 4 homogeneous matrix so that we can take both translation and rotation into account.

� i � 1;i = Y i � 1;i P i =

2

6
6
4

cos� i � 1;i � sin� i � 1;i 0 dx
i � 1;i

sin� i � 1;i cos� i � 1;i 0 dy
i � 1;i

0 0 1 0
0 0 0 1

3

7
7
5

2

6
6
4

1 0 0 0
0 cos� i � sin � i 0
0 sin� i cos� i 0
0 0 0 1

3

7
7
5 ; (7)

whered i � 1;i =
�
dx

i � 1;i ; dy
i � 1;i ; 0

� T
represents the origin point of faceti; i + 1 observed from the

local coordinate ofi � 1; i (Fig. 4). Then, the orientation and position of faceti; i + 1 with
respect to facet 0; 1 is

T i =
�
L i M i N i O i

0 0 0 1

�
;
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where O i represents the position of the origin observed from facet 0; 1. The derivative of
Eq. (2) is calculated as

@R
@�i

=

2

6
6
4

0 � L z
i L y

i
L z

i 0 L x
i

� L y
i L x

i 0
L i � O i

0 0

3

7
7
5

We obtain six independent equations:

f =

2

4
R(2; 3)
R(3; 1)
R(1; 2)

3

5 = 0 and g =

2

4
R(1; 4)
R(2; 4)
R(3; 4)

3

5 = 0:

Here, f = 0 and g = 0 represent the closure conditions of rotation and translation, respec-
tively. We can similarly use a global coordinate system to replaceL i by
L 0

u;v = ( xu � xv) =kxu � xvk and O i by O0
u = xu.

Sincef = 0 reduces to Eq. (6), the overall constraints for the in�nitesimal folding motion
are as follows.

1. For each interior vertex v and for each hole with incident foldlinesu; v (v is on the
boundary), Eq. (6) is satis�ed and,

2. For each hole,
X

incident foldline u;v

�
(xu � xv)
kxu � xvk

� � u;v

�
� xv = 0: (8)

Similarly to the case of disk origami, these equations are equivalent toan equilibrium condition
when the hole is replaced by a rigid body. Here, Eqs. (6) and (8) represent the equilibrium
of forces and moments, respectively.

A valid reciprocal �gure of the foldline network can be constructedsimilarly to the case of
a disk. However, the reciprocal �gure is only a necessary conditionfor in�nitesimal foldability,
and is not a su�cient condition.

2.2. Conditions in degenerate planar surfaces

In the previous sections, we considered a polyhedral surface in general, which is not nec-
essarily a developable surface, although the term \origami" typicallyimplies developability.
Developable origami surfaces can be manufactured just by foldinga sheet of paper; in this
process of manufacturing, the existence of folding motion matters. We have observed from
examples that when we apply developability and 
exibility conditions at the same time, the
surface often converges to a completely 
at state. When every vertex lies in a plane, the
constraints given by a reciprocal �gure degenerate, and one of the three constraints for each
vertex is lost. In this case, the additional 
exibility is not desirable since it represents no
valid folding motion, but rather lends a trivial shakiness in the planar state.

In order to �nd a valid folding motion in the 
at state, we apply the condition that
the signed area of the cell in the reciprocal �gure is zero as is introduced byWatanabe and
Kawaguchi [11], as the second-order folding mode of origami in the 
at state. This zero-area
condition is represented as

n� 1X

i =0

i � 1X

j =0

L j � � j � L i � � i = 0: (9)
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Figure 5: Left: A pattern without the zero-area condition. Note the asymmetric quad-
rangles and hexagons with positive- and negative- signed area. Thispattern is a bistable
structure when the panel is not triangulated. Right: Modi�ed pattern with the zero-area
condition. This pattern has second-order 
exibility in a planar state.

Since L i lies in a plane, the orientation of this vector is always kept perpendicular to the
plane. Therefore, only one out of three equations is independent,and the vector orientation
is always perpendicular to the constraints of Eq. (5). Therefore,the intersection of Eqs. (5)
and (9) can be represented by their linear combination as

n� 1X

i =0

�
L i � � i +

i � 1X

j =0

L j � � j � L i � � i

�
= 0: (10)

Figure 5 shows example patterns with and without the zero-area conditions.

3. Computational method

We propose a novel interactive method for designing variations of in�nitesimally foldable
origami structures. The method is especially useful when achievinga 
exible state of an
origami structure in which the number of constraints exceeds thenumber of variables; this type
of origami generically becomes a static structure. The con�guration of an origami structure
with an in�nitesimal folding mode is represented by its vertex coordinates and reciprocal
�gure. We parameterize the con�guration by the vertex coordinates X =

�
xT

1 ; � � � ; xT
V

� T
and

the ratios W = ( w1; � � � ; wE in )T of the edges. Each element ofW corresponding to edgee
connecting verticesu; v is representedwe = � � e=`e. The constraints in Eq. (6) are re-written
as

� fv =
X

u incident to v

wu;v (xu � xv) = 0 (11)

Here, the sign ofwe indicates wheter the fold angle increases or decreases by the folding. In
order to avoid the trivial solution that the angular velocity of everyfoldline equals 0, we set
the following conditions:

(
we < � � folding mountain or unfolding valley,

we > � folding valley or unfolding mountain,
(12)

where � can be set to an arbitrary positive value proportional to some scalefactor.
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Initial solution We solve Eqs. (11) and (12) by solving

U =
VinX

v=1

k� fvk2 +
E inX

e=1

max (0; � � j wej)
2 = 0

with respect to X and W . The solution is not unique, and we �nd a solution close to the
original con�guration by the following two steps.

1. Minimize U with respect to W while X is �xed.
2. Minimize U with respect to X and W using the previous result as the initial con�gu-

ration.
If 3V < E as in a triangular disk mesh, step 1 alone yieldsU = 0. An interesting case
occurs when 3V � E, e.g., quadrangle based origami pattern or a cylindrical or closed poly-
hedron, which suggests that the structure is generically static. The minimization problem
in step 1 converges to the least square solution of an over-constrained system, and then the
pattern is modi�ed to a 
exible con�guration with singularity in step 2. For solving the above
optimization problems, the conjugate gradient method is used.

Exploring solution space Once we obtain a solution, we can get variations of the pat-
terns using a perturbation-based method that usesF (X ; W ) =

�
� f T

1 ; : : : ; � f T
Vin

	 T
= 0 as a

geometric constraint that forms a multi-dimensional continuous solution space. A plausible
deformation represented by 3V + E-vector [� X � W ]T must satisfy

�
C

�
�

� X
� W

�
=

2

4
@F
@X

@F
@W

@G
@X

@G
@W

3

5
�

� X
� W

�
= 0; (13)

where G represents other optional constraints such as the penalty constraints derived from
Eq. (12), developability, and 
at-foldability, i.e., the constraints combined with the constraints
described in [10]. The elements are calculated as follows.

@� fv

@xu
=

8
><

>:

�
P

k incident to v wv;k if u = v

wv;u if u is incident to v

0 else

(14)

@� fv

@wu;k
=

(
xk � xv if u = v (or xu � xv if v = k)

0 else
(15)

Equations (8) and (10) are polynomial functions ofwu;v and xu; the derivative functions in
these cases can be similarly calculated.

We apply the perturbation based method similar to [10] using the Moore-Penrose gener-
alized inverseC+ of the constraint matrix C as follows:

�
� X
� W

�
=

�
I � C+ C

�
�

� X 0

� W 0

�
; (16)

where
�

� X 0

� W 0

�
is an arbitrarily assigned initial deformation, which is projected orthogonally to

the constrained subspace by multiplying with (I � C+ C); this results in a valid deformation
that is as close as possible to the given initial deformation.
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Figure 6: Left: A snub dodecahedron with 
ipped edges. Middle: A shaky polyhedron
obtained by two-step optimization to satisfy the in�nitesimal foldability condition. Right:
The freeform variation wherein shakiness and planarity of the pentagonal facet are pre-
served.

We implemented the constraints and variables by improving freeformorigami [10]. In this
system, the user can freely select and drag points on the rendered origami structure through
a 2D input device to apply a deformation, e.g., translation of a point ora weighed point-set
translation or rotation. Before actually applying the deformation to the current state, the

deformation vector
�
� X 0

0

�
is substituted by

�
� X
� W

�
to obtain a constrained valid next state.

Since the above-mentioned Euler's integration accumulates the error, the residual is eliminated
based on Newton-Raphson's method for each step. The generalized inverse solution for each
step is calculated using the conjugate gradient method. In this way, we immediately achieve
a valid variation of forms in an interactive manner.

4. Shaky closed polyhedron

By using the system, we can design a variation of a shaky, i.e., in�nitesimally transformable,
closed polyhedron. Since the number of constraints equals the number of variables in a
generic closed 3D polyhedron, a shaky polyhedron is a non-trivial singular polyhedron. Since
the shaky polyhedron must include valley fold lines, we �nd its initial topology by 
ipping
the edges of a convex polyhedron. Figures 6 and 7 show examples ofshaky polyhedra.

5. Finitely foldable quadrivalent mesh from crease pattern

It is known that a quadrivalent mesh with planar facets with developability and 
at-foldability
is �nitely transformable if there exists an intermediate 3D state [9]; the limitation of this
method was that we needed to start from a valid 3D con�guration, instead of a 2D crease
pattern. By applying Eq. (10) for each interior vertex instead of the existence of 3D state,
we can modify a bi-directionally 
at-foldable quadrivalent pattern into a �nite rigid foldable
pattern (Fig. 8). An interesting side e�ect of using this method fordesigning discrete version
of curved folding represented as planar quad mesh is that the smoothness of the folding is
naturally obtained. This successfully avoids the jaggy artifacts that existed in the discrete
curved folding representation in [10].
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Figure 7: A shaky closed polyhedral tower with partial developability(the entire surface
is developable except for the top and bottom vertices indicated in the �gure). This
polyhedron produces a twisting motion when it is compressed.

(a) (b)

Figure 8: (a) An invalid pattern that satis�es developability and 
at- foldability. (b) A
valid �nitely foldable pattern is obtained when Eq. (10) is introduced. The method also
achieves the \smoothness" of discretized curved folding.

6. Origami and tensegrity

The equivalence of an in�nitesimal folding mode of a polyhedral surface and the equilibrium of
forces implies that the same shape can be used as a shaky polyhedron as well as a tensegrity
structure. First-order 
exible closed polyhedron is associated with a self-equilibrium form
such as a tensegrity structure. By substituting mountain and valley folds of a polyhedron
by cables and struts, i.e., compression and tension members, respectively, we can often (but
not always) obtain a tensegrity structure where axial forces proportional to the folding angle
velocity are applied (Fig. 9). In order to ensure that it is a tensegrity structure, we have to
take into account stability along with equilibrium when designing tensegrity structure; this is
not the scope of this paper. This graphical connection among di�erent structural systems is
an interesting aspect to be investigated in future.
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Figure 9: Tensegrity structure vs. shaky polyhedron with its crease pattern.

7. Conclusion

The condition for a valid in�nitesimal folding mode of an origami structure homeomorphic
to a disk and its equivalence to the edge lengths of its reciprocal �gure were demonstrated.
In the case of an origami structure with holes, additional three conditions are introduced for
each hole. The conditions around each interior vertex and hole are equivalent to the equi-
librium conditions of a point and a rigid body, respectively. We also showed the condition
that represents in�nitesimal foldability when the structure is unfolded 
at. We proposed a
design system in which an in�nitesimally transformable polyhedral surface can be designed
interactively by combining with the framework of freeform origami. By using this system, we
were able to design variations of shaky closed polyhedron with or without partial developabil-
ity and �nitely rigid foldable quadrivalent origami or discrete curved folding. The potential
applications of these models include the design of deployable structures using �nite foldability
and the designs of energy absorption devices using in�nitesimal transformability.
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