
Simulation of Rigid Origami

Tomohiro Tachi
The University of Tokyo

tachi.tomohiro@gmail.com

Abstract

This paper presents a system for computer based interactive simulation of origami,
based on rigid origami model. Our system shows the continuous process of fold-
ing a piece of paper into a folded shape by calculating the configuration from the
crease pattern. The configuration of the model is represented by crease angles, and
the trajectory is calculated by projecting angles motion to the constrained space.
Additionally, polygons are triangulated and crease lines are adjusted in order to
make the model more flexible. Flexible motion and comprehensible representation
of origami help users to understand the structure of the model and to fold the model
from a crease pattern.

1 Introduction

Simulation of origami is very important for representing or modeling origami in computer.
It helps paper folders to understand the structures of origami models, and can be used as
a tool for designers to draw diagrams. We propose a system for simulating folding process
from crease pattern to folded base, based on rigid origami simulation (Figure 1).

There have been many approaches for simulating origami. One way is to simulate
origami by a sequence of simple folding steps as shown in [1] by Miyazaki et al. Since the
final state of an origami model is represented by folding steps, it is easy to reconstruct an
animation from a sheet of paper to the model. However, the origami models that can be
represented in this system are limited by the simplicity of folding steps, and not suitable
for many complex origami models whose folding process cannot be divided into simple
folding steps.

Figure 1: Screenshots of the simulation program. Left: base of ”Kamehameha Wave”(by
the author). Middle: pleated hypar. Right: base of ”Tachikoma” (by the author).



Thus representing origami models by crease pattern seems suitable. ORIPA is a crease
pattern editor with estimation of folded figure, developed by Mitani [2]. Final state with
stacking order is estimated, though sometimes the estimation fails. Thickness of paper
is represented for better understanding of the structure of the model, but there are no
intermediate state from crease pattern to the final shape.

It is possible to simulate intermediate state of folding, by using rigid origami model (i.e.
plates connected by hinges constrained around vertices). Balkcom [3] uses rigid origami
model for origami simulation. His method is based on virtual cutting and combination
of forward and inverse kinematics. The calculation of the trajectory runs fast in this
method, but the mountain-valley values of some creases are not taken into account for
the folding motion.

Our system is based on rigid origami simulation, and uses crease angles of all fold
lines as variables to represent configuration of an origami model. The simulation method
is based on projection to the constraint space, thus possible to use folding motion of all
crease lines as driving force of folding. This results in a robust overall motion which is
independent of the positions of the virtual cutting. Additionally, our system can add
flexibility to origami models by adding and adjusting crease lines. In this method, folding
motion of non rigidly foldable models can also be simulated.

The system provides a smooth and comprehensible interactive animation of folding
from a crease pattern to the folded base, which helps users to understand the structure
of the origami model and the way to fold the model from the crease pattern. This helps
paper folders to fold models from a crease pattern, and also encourages designers to use
a crease pattern as a medium for publishing origami models.

2 Kinematics of Rigid Origami

In our model, an origami configuration is represented by folding angles of edges. Folding
angles change according to mountain-valley values of the fold lines, when the paper get
folded. Those edges are connected with facets and form closed loops, and for each closed
loop we have a constraint on angle movement. If there is no hole inside the loop, then
the constraint is satisfied by intersection of constraints by single vertices inside the loop
(Figure 2). Our model assumes that the paper is without a hole. Folding motion is
numerically calculated using linear approximation of constraints by single vertices.

Figure 2: Left: No hole is inside the loop and the constraint is satisfied by the intersection
of single-vertex constraints inside. Right: A hole is inside the loop and we have to think
about the constraint around the hole.

Necessary conditions for single-vertex rigid origami shown in [4] by Belcastro and Hull



are used as constraints of multi-vertex rigid origami model. Suppose there are n edges
`1, · · · , `n connected to the vertex. For a single-vertex origami, the 3×3 matrix constraint
function F of fold angles ρ1, · · · , ρn is given by

F (ρ1, · · · , ρn) = χ1 · · ·χn−1χn = I (1)

where matrices χ1, · · · , χn represent rotation by fold lines `1, · · · , `n respectively (Figure
3). Derivative of the equation is given by

ℓ1

ℓ2

ℓ3

ℓ4

B12
B23

B34
B41

C1(ρ1)

C2(ρ2)

C3(ρ3)

C4(ρ4)

X1=C1B12
X2=C2B23
X3=C3B34
X4=C4B41

Figure 3: An example of rotation matrices of a single-vertex origami.

dF

dt
=

∂F

∂ρ1

ρ̇1 + · · ·+ ∂F

∂ρi

ρ̇i + · · ·+ ∂F

∂ρn

ρ̇n =




0 0 0
0 0 0
0 0 0


 (2)

We get 9 equations (i.e. one for each element of F) for angles movement ρ1, · · · , ρn

represented using 9× n matrix.



∂F
∂ρ1 (1,1)

· · · ∂F
∂ρn (1,1)

∂F
∂ρ1 (1,2)

· · · ∂F
∂ρn (1,2)

...
...

∂F
∂ρ1 (3,3)

· · · ∂F
∂ρn (3,3)




︸ ︷︷ ︸
9×nmatrix




ρ̇1
...

ρ̇n


 =




0
...
0


 (3)

However, since F is a rotation matrix (i.e. orthogonal matrix) the equations are
redundant and only 3 of 9 equations are independent. Partial derivative of an orthogonal
matrix F at F = I is a skew-symmetric matrix because

∂F

∂ρi

+

(
∂F

∂ρi

)T
∣∣∣∣∣
F=I

=
∂F

∂ρi

FT + F
∂FT

∂ρi

∣∣∣∣
F=I

=
∂

∂ρi

(
FFT

)∣∣∣∣
F=I

= 0 (4)

Partial derivative of the constraint function is represented in the following form using 3
independent variables a, b, c.

∂F

∂ρi

=




0 −a c
a 0 −b
−c b 0


 (5)



We get a 3× n matrix instead of a 9× n matrix shown in (3),




a1 · · · an

b1 · · · bn

c1 · · · cn







ρ̇1
...

ρ̇n


 =




0
...
0


 (6)

Then we rewrite the matrix using global edge number. Assume that edge i is connected
and edge j is not connected to vertex k. Constraint by vertex k is represented by the
matrix Ck, whose ith column is identical to the column of the previous matrix that
corresponds to the edge, and jth column is zero vector.

[Ck]




ρ̇1
...
˙ρN


 =

ith jth

· · · aki · · · 0 · · ·
· · · bki · · · 0 · · ·
· · · cki · · · 0 · · ·




︸ ︷︷ ︸
3×Nmatrix




ρ̇1
...
ρ̇i
...
ρ̇j
...
˙ρN




=




0
0
0


 (7)

where N is the number of edges. Global constraints by multiple of vertices are given by
the intersection of the conditions.

Cρ̇ =




[C1]
...

[CM ]




︸ ︷︷ ︸
3M×Nmatrix




ρ̇1
...
˙ρN


 =




0
...
0


 (8)

where M is the number of vertices inside the paper.
If and only if the rank of matrix C is less than N , the linear equation has non-trivial

solutions. The solution of this linear equation is calculated using pseudo-inverse matrix
C+ of matrix C.

ρ̇ =
[
IN −C+C

]
ρ̇0 (9)

where ρ̇0 is unconstrained value of the angles velocity calculated by mountain-valley value
of the fold edges. The idea is to project unconstrained angles movement to constrained
space by using orthogonal projection matrix [IN −C+C]. Trajectory can be calculated
by Euler integration.

∆ρ = ρ̇(t)∆t =
[
IN −C+C

]
∆ρ0 (10)

However this Euler integration results in accumulation of numerical error, so we modify
equation(8) using the residual vector r.

Cρ̇ = −r (11)

where
r =

[
r1a r1b r1c · · · rka rkb rkc · · · rMa rMb rMc

]T
(12)

where rka, rkb, rkc are the residual of elements of F corresponding to ak, bk, ck respectively.

F =




1 0− ra 0 + rc

0 + ra 1 0− rb

0− rc 0 + rb 1


 (13)



The modified solution is

∆ρ = −C+r +
[
IN −C+C

]
∆ρ0 (14)

Pseudo-inverse is calculated as C+ = CT
(
CCT

)−1
if C is full rank and 3M < N .

When this condition is satisfied, the linear equation is solved as follows.

∆ρ = −C+r +
[
IN −C+C

]
∆ρ0

= −CT
(
CCT

)−1
r +

[
IN −CT

(
CCT

)−1
C

]
∆ρ0

= ∆ρ0 −CT
{(

CCT
) \ (r + C∆ρ0)

}
(15)

Ideal Trajectory

Modified Trajectory

Euler Integration

∆ρ0

−C+C∆ρ0

−C+r

r=r

r=0

Figure 4: Idea of the trajectory. [IN −C+C] is a projection matrix that project uncon-
strained angles movement vector ∆ρ0 to the constraint linear space. The angles movement
vector is further modified to reduce residual.

3 Adding and Adjusting Crease Lines

3.1 Closed Vertex

If we simply fold a paper on already folded edges, the intersection of a new line and an
old line is a vertex with fold lines whose motion is locked by the new fold. We call this
kind of a singular vertex a ”closed vertex.” In our system, a vertex is detected as a closed
vertex if there is a set of three adjacent crease lines connected to the vertex whose outer
two of are symmetrical about the center crease and their mountain-valley assignments are
opposite.

There are two ways to avoid closed vertex. One way is to split the ”inside angle”, which
we call the angle that comes inside when folded, by adding crease lines, and another way
is to reduce the inside angle (Figure 5).

3.2 Adding Crease Lines by Triangulation

Many rigid origami models with valency 4 vertices are not rigidly foldable because of the
lack of the degrees of freedom (DOF). Total degrees of freedom of the model are N − 3M



θ θ
θ+δ θ−δθ

θ−αα

Closed Vertex Split Inside Angle Reduce Inside Angle

outside inside

Mountain Fold

Valley Fold

Figure 5: Two ways to avoid avoid closed vertex.

if the constraint matrix is full rank (i.e. if there is no singularity) where M and N are the
number of vertices and edges inside the paper (i.e. not on the perimeter) respectively.

Polygons with more than 3 vertices are triangulated. k − 3 degrees of freedom are
added to the model per one k-gon by adding k− 3 crease lines on each polygon. If all the
polygons are triangulated, the total degrees of freedom of the model is N0 − 3 where N0

is number of edges on perimeter of the paper (Figure 6). There are multiple ways to add
crease lines when triangulating polygons. Appropriate crease lines are added so that as
many inside angles as possible are split.

Figure 6: An example of triangulation. Left: Not triangulated model is over constrained
(M = 19, N = 42, DOF = N − 3M < 0). Right: Triangulated model has 3 DOF
(M = 19, N = 60, N0 = 6, DOF = N − 3M = N0 − 3 = 3).

3.3 Adjusting Crease Lines

Crease lines are adjusted to avoid singularity by closed vertices. Position of each vertex
is moved to the direction that reduces inside angles of closed vertices. Amount of dis-
placement for each vertex is set according to the ”angle unevenness” of the vertex, which



is defined as {max(ρi)−min(ρi)}, for better balance of folding process of fold lines. This
reasonably results in no adjustment of the crease pattern when both not folded and com-
pletely folded state.

Most origami models have many flat foldable vertices. Flat foldable vertices are kept
flat foldable during the adjustment of crease lines so that an adjusted model can be folded
to the final state. Kawasaki’s theorem is used as the constraints on displacement of the
vertices [5]. Here is Kawasaki’s theorem:

∑

i:odd

θk,i =
∑
i:even

θk,i = π (16)

where θk,i represents ith angle between the edges around vertex k (Figure 7).

θk,1

θk,2θk,3

θk,4
θk,5

θk,6

Figure 7: A flat-foldable vertex k

Displacement of the vertices are represented as a 2Mall × 1 vector

[
∆X
∆Y

]
where Mall

is the number of all vertices. Constraint for the displacement is given by

[
∂G

∂X

∂G

∂Y

]

︸ ︷︷ ︸
[Cadj]

[
∆X
∆Y

]
= 0 (17)

where G is a vector function of X and Y whose kth element is

G (X,Y)k =
∑

i:odd

θk,i −
∑
i:even

θk,i (18)

Constrained displacement of the vertices are calculated in the same way as calculating
trajectory of the angles.

C+
adjr

′ +
[
I2Mall

−C+
adjCadj

] [
∆X0

∆Y0

]
(19)

where

[
∆X0

∆Y0

]
are the unconstrained vertex displacement and r′ is the residual vector of

function G.



3.4 Result of Adding and Adjusting Crease Lines

Figure 8 shows the results of adjusting crease lines after triangulating the models. Some
models become flexible enough to show how the facets are stacked when all the crease
lines are simultaneously folded. Other models are possible to be folded only when their
crease lines are adjusted. Overall animation of folding from crease pattern to final shape
is smoother and more comprehensible when the crease lines are adjusted.

Triangulated Triangulated & Adjusted

(a)

(b)

(c)

(d)

Figure 8: (a)(b) Adjusting crease lines adds flexibility to the model and results in more
natural and comprehensible origami representation. (c)(d) Some models cannot be folded
to the final state without adjustment. (Model in (d) is base of ”Teatime” by the author.)



4 Implementation and Result

The system was implemented as a program written in C with OpenGL. The user can
interactively simulate folding and unfolding of origami models, whose crease pattern data
is given in ORIPA format. Conjugate gradient method was used for solving the linear
equation. The program runs in an interactive speed for many complex origami models
(ex. 16× 16 box-pleats models). Screenshots of the program is shown in figure 1.

Two kinds of penalty force are used to avoid local self-intersection. One limits the
folding angles of mountain or valley crease lines to [−π, π] to make two adjacent facets not
intersect each other. The other limits the folding angles of added crease lines according
to folding angles of adjacent crease lines to sufficiently make connected three facets which
share one vertex do not intersect each other. Although this self-intersection avoidance
is not sufficient to avoid global or complicated local self-intersection, it works for many
models.

The system also supports transition from one folded state to another folded state so
that it can be used as a tool for drawing diagrams. The folding process can be controlled
by a set of multiple crease patterns. However, it is observed that many origami folding
steps are not rigidly foldable. Sink folds and some reverse folds are not possible to be
executed without unfolding all crease lines (Figure 9).

(a)

(b)

Figure 9: Transition from one folded state to another. (a) Petal fold can be simulated.
(b) Simple open sink can be folded, but need to unfold all crease lines during the folding
process.

Many models can be folded to the desired state in this system, while many cannot
be folded. We have observed that foldability of the model is determined by how the
model have closed folds in the structure rather than complexity of the model. In general,
origami models that is actually easy to be opened into a sheet of paper in real world can be
easily folded and unfolded. For example, Miura fold, waterbomb tessellation, and pleated
hypars are smoothly folded in the simulation, while a crane with finishing, four-crane base
or tatou cannot be not folded to the final state (Figure 10).

The simulation program is planned to be available in the author’s website (http:
//www.tsg.ne.jp/TT/).



(a) (b) (c)

(d) (e) (f)

Figure 10: Example of simulation. (a)Miura fold (by Koryo Miura), (b)waterbomb tessel-
lation and (c)pleated hypar are foldable, and (d)crane with finishing, (e)four-crane base
and (f)tatou get stuck or intersect themselves before folded.

5 Conclusions and Future Works

We proposed a system for simulating folding motion of origami by calculating the trajec-
tory by projection to the constrained space based on rigid origami model. An additional
method was proposed for making origami models more flexible by triangulating polygons
and adjusting crease lines. Moreover we investigated local self-intersection avoidance and
transition from one state to another state. As a result we could get an interactive system
that user can fold and unfold relatively ”open” origami models from crease pattern in a
robust, smooth, and comprehensible way.

Global self-intersection avoidance problem and stacking order problem are not solved
in this paper and remain to be the future works. Another work to be done in the future
is to control the surface of high-DOF origami models through user interaction, which is
useful for understanding how an origami surface three-dimensionally changes its form.

References

[1] S. Miyazaki, T. Yasuda S., Yokoi, and J. Toriwaki. An origami playing simulator in
the virtual space. The Journal of Visualization and Computer Animation, 7(1):25–42,
1996.

[2] J. Mitani. Oripa; origami pattern editor. http://mitani.cs.tsukuba.ac.jp/

pukiwiki-oripa/, 2005.

[3] D. Balkcom. Robotic Origami Folding. PhD thesis, Carnegie Mellon University, 2002.

[4] S. Belcastro and T. Hull. A mathematical model for non-flat origami. In Origami3:
Proceedings of the 3rd International Meeting of Origami Mathematics, Science, and
Education, pp. 39–51, 2002.

[5] T. Kawasaki. On the relation between mountain-creases and valley-creases of a flat
origami. In Proceedings of the 1st International Meeting of Origami Science and
Technology, pp. 229–237, 1989.


