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Abstract 

 Transformable polyhedral surfaces with rigid facets, i.e., rigid origami, are 
useful for designing kinetic and deployable structures. In order to apply rigid origami to 
various architectural and other engineering design purposes, it is essential to consider 
the geometry of origami in kinetic motion and provide sufficiently generalized methods 
to produce controlled variations of shapes that suit the given design conditions. In this 
paper, we introduce the author’s recent studies and their extensions on the geometry of 
rigid origami for designing transformable and deployable structures.  
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1 Introduction 

Rigid-foldable origami, or rigid origami, is a piecewise linear developable surface that 
can realize a deployment mechanism if its facets and foldlines are substituted with rigid 
panels and hinges, respectively. Designing such a deployment mechanism has a 
significant meaning in an engineering context, particularly in architecture in the 
following reasons: 

1. The structure based on a watertight surface is suitable for constructing an 
envelope of a space, a roof, or a facade.  

2. Purely geometric mechanism that does not rely on the elasticity of materials can 
realize robust kinetic structure in a larger scale under gravity. 

3. The transformation of the configuration is controlled by smaller number of 
degrees of freedom. This enables a semi-automatic deployment of the structure. 

Several designs of rigid-origami structures have been proposed from around 1970’s. For 
example, the developable double corrugation surface, or Miura-ori [1], is a well-known 
rigid origami structure utilized in the packaging of deployable solar panels for use in 
space or in the folding of maps (Figure 1). This provides a one-DOF mechanism from a 
developed state to a flat-folded state. Resch and Christiansen [2] have proposed a 
kinetic plate mechanism that forms a three-dimensional dome that is folded out of a 
sheet of a panel and folds into another three-dimensional state without curvature (Figure 
2). Hoberman proposed several rigid-foldable surfaces based on symmetric operations, 
e.g., [3], although he does clearly distinguish rigid and non-rigid foldable patterns. 
In spite of these proposals, freely applying rigid origami to actual designs of 
architectural space has been unachieved thus far, the reason of which includes the lack 
of designability in the existing methods. Since rigid origami transforms in a 
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synchronized motion based on multiple non-linear constraints, the design of rigid 
origami is not a trivial problem given by an arbitrary design approach without geometric 
considerations. However, starting from a known pattern of origami and just applying 
them to architectural purposes does not work either because the model cannot 
sufficiently adapt functional and environmental conditions required by an actual design 
context. Therefore it is important to show a general geometric methods to find forms 
based on the kinetic properties of origami, while enabling flexible design variations that 
preserve that properties, rather than relying on trial-and-error based approach. The 
objective of this study is to show basic considerations on the geometry of rigid origami 
and introduce novel methods to obtain the design variations based on them. In this paper, 
we will show the kinematics of rigid origami, the design methods to allow folding 
motion, and the design examples. Note that we limit our considerations to geometric 
ones and do not intend to analyze elastic and plastic behavior of the structure with 
specific materials. 

Figure 1: Miura-ori. Figure 2: Ron Resch’s pattern. 
 
2 Kinematics of Rigid Origami 

2.1 Model 
The kinematics of origami can be represented by the unstable truss model or the 
rotational hinges model. The former represents the configuration of the structure by the 
positions of vertices. The change in the configuration is constrained by length 
preserving rigid bars along edges (creases and foldlines) and diagonals of facets (2(k − 
3) bars for a planar k-gonal facet); this model is used by Resch and Christiansen [2], and 
it is suitable for directly using the points positions in a non-singular state. The latter 
represents the configuration by the rotational angles of edges and asserts the constraints 
so that closed loops cannot separate; this model gives comparatively robust simulation 
method such as Rigid Origami Simulator [4]. 
Here, we use the latter model for understanding the concept of rigid foldability. As 
described, the configuration is represented by their folding angles ρ, which are 
constrained by any closed strip of facets being not separated by the folding motion. If 
we assume that a surface is a disk, the closure of any loop can be reduced to the 
combination of local constraints around interior vertices. For each interior vertex, we 
can use an (altered) form of the rotational matrix condition introduced by Belcastro and 
Hull [5]. For each interior vertex and its incident foldlines of fold angles ρ1, …, ρn, 

   IR   nnn  111 ,,   (1) 
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where 3×3 matrices χ1, …, χn represent rotation by fold lines; each of them is 
represented as 
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where θi is the sector angle between the foldlines i and i + 1 (Figure 3 Left). Since i 
is a rotational matrix, this fundamentally reduces to 3 scalar equations by using 
elements 
R(2, 3), R(3, 1), R(1, 2). The constraints for the global model with NVi interior vertices 
can be represented by a 3NVi-vector equation F = 0. Therefore, the infinitesimal motion  
can be represented by the solution space of the Jacobian matrix, which is a 3NVi × NEi 
matrix where NEi is the number of foldlines (or interior edges). 
Note that in a general case of orientable manifold with (possibly multiple) boundary, we 
can have different number of constraints. If the surface has NL hole(s), we obtain extra 
NL loop constraints to preserve the connectivity of the loops. (We additionally suggest 
that in the case of arbitrary manifold, these loops are the cycles that form a homology 
basis of the manifold.) Each loop constraint is comprised of 6 equations derived from 3 
equations of rotational matrix and 3 equations of transition along the rotated edges. The 
additional 3 equations can be represented as, for a loop of n facets around the hole, 
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where χi and di represent the rotation matrix of the i-th facet orientation and the vector 
representing the difference of i-th and i+1-th origins in a local coordinates (Figure 3 
Right). Therefore the number of constraints is 3NVi + 6NL. 
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Figure 3: Constraints around loops and vertices 
 

2.2 Rigid Foldability 
Infinitesimal Rigid Foldability: The kinetic property of origami can be considered 
from the viewpoints of stability. By using the Jacobian matrix, we can investigate rigid 
foldability based on numerically analyzing infinitesimal motion. If the matrix is not 
singular, the constraint gives under-constrained system with NEi − 3NVi − 6NL 
dimensional solution space. In general, if the number of redundant constraints is NS, the 



Proceedings of the International Association for Shell and Spatial Structures (IASS) Symposium 2010, Shanghai 
Spatial Structures – Permanent and Temporary 

November 8-12 2010, Shanghai, China 
 

solution space has NEi −3NVi −6NL +NS dimensions. The kinetic motion is given by 
solving the Jacobian as, 
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where   ρF  is the Moore-Penrose generalized inverse, or pseudo-inverse of 
Jacobian matrix. Here, ∆ρ0 represents an arbitrary infinitesimal folding motion, and the 
equation solves the solution ∆ρ closest to ∆ρ0. In order to simulate the folding motion of 
rigid origami, we can apply Euler integration of this infinitesimal motion while 
eliminating the residuals using Newton-Raphson method. 
As described, surface attains additional infinitesimal DOFs when the Jacobian matrix is 
singular. It is known that the constraint vector of one vertex is the direction cosines of 
crease line incident to the vertex [4, 6]. This indicates that the Jacobian matrix becomes 
singular when all the vectors are co-planar, which happens in flat states. In fact, every 
vertex of origami can infinitesimally transform arbitrarily along the normal of the 
surface in the developed state, although such a transformation is not valid in a finite 
sense and cannot be applied for structural designs. 
Finite Rigid Foldability: Here, in order to use the kinetic behavior for a transformation 
mechanism, we require that the transformation is finite, i.e., not shaky. The finite 
folding motion is ensured by keeping the degrees of freedom of the mechanism positive 
throughout the transformation. If any part of panels is not touching each other, the 
degrees of freedom is only given by the Jacobean matrix: DOF = NEi − 3NVi − 6NL + NS. 
Here, note that in the discussion of finite foldability, the singularity must be 
independent of folding configuration and be preserved through the transformation, thus 
we cannot use singularity coming from co-planarity of edges. If we use Euler’s 
polyhedral formula, this can be written as, 

   facetgon - of num333DOF
4

SLEo kkNNN
k



 , (5) 

where NEo is the number of edges on the boundary. 
From this consideration, we can understand that the flexibility of rigid origami mainly 
comes from the flexibility of the boundary of the surface. Therefore, a closed 
triangulated polyhedron is normally not foldable, since its DOF is NS (its kinetic 
behavior is equivalent to that of a disk of NEo = 3). Examples of rigid foldable closed 
polyhedra [7, 8] are known to have volume preserving singularity as conjectured as the 
bellows conjecture by Connelly et al. [9]. 
 
3 Triangle Based Design 

The most flexible design comes from a triangular mesh. If we assume no singularity, the 
degrees of freedom is represented as 

 33DOF LEo  NN . (6) 

In this case, the kinetic motion of a mesh is totally controlled by the boundary 
configuration. For example, a design of a triangular mesh shell with 6 boundary edges 
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and 3 pin hinged legs — let us call this structure triangulated tripod — can be useful. 
The total number of degrees of freedom of the structure is 9 because the structure has 6 
degrees of rigid body motion and 3 degrees of transformation mechanism. Since the 
structure is pinned at their legs, it constrains 3 × 3 degrees of freedom, which makes the 
overall structure statically determinate. Therefore the structure transforms according to 
the positions of the legs as shown in Figure 4, and it becomes a static structure once the 
legs are fixed. 
We can design the variations of triangulated tripods in a comparatively easy way since 
the basic property of the structure is ensured by the number of boundary elements 
(Figure 5). However, the global behavior such as the possible range of folding and the 
existence of a path from a state to another is determined by the configuration space of 
the structure. This is only understood through examining the infinitesimal behavior at 
every possible state of the specific model through exploring the configuration space 
with simulational methods. In order to simulate the kinematics of the structure with pin 
constraints, we can use either the unstable truss model or rotational hinges model with 
inverse kinematics. 

 
Figure 4: A triangulated tripod of different configurations. 

(a) (b) (c) (d)
Figure 5: Examples of triangulated tripods. Quadrilateralpanels are all triangulated. 

 
4 Quadrilateral Based Design 

Another approach for designing a rigid-foldable structure is to use a quadrilateral mesh 
such as Miura-ori. A quadrilateral mesh origami is normally not rigid-foldable since the 
degrees of freedom is given as 

 SfacetsLEo 33DOF NNNN  , (7) 
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Here, the number of facets Nfacets basically increases proportional to the square of NEo 
for a normal two dimensional mesh. Therefore, a rigid-foldable quadrilateral mesh 
origami must rely on the singularity. Such a structure has an engineering advantage as 
follows: 

1. The mechanism has exactly 1 degree of freedom; thus the transformation can be 
controlled by one actuator independent of the complexity of the overall surface. 

2. The structure is redundant; this enables a robust mechanism that works even 
when we remove several elements from the surface. 

Finding the singularity that works throughout the finite transformation is not a trivial 
problem, especially when designing a freeform. A general condition for this singularity 
is not yet been revealed so far. Therefore, we propose a design approach to generalize a 
pattern known to rigid fold while keeping its intrinsic symmetry. Typical examples of 
rigid-foldable quadrilateral mesh surfaces are Miura-ori and the “eggbox” pattern [10]. 
These patterns are known to be generalizable to some extent: the rigid-foldability of the 
generalized form of the former is investigated by Tachi [11] as a flat-foldable 4-valent 
mesh origami and the latter by Schief et al. [12] as a discrete Voss surface. The 
mechanisms of the vertices of these rigid-foldable structures are essentially identical, 
and we can produce a hybrid rigid-foldable surface that is general enough to produce a 
freeform. 
 
4-Valent Mesh Origami: The condition for the rigid-foldability of quadrilateral mesh 
flat-foldable origami is investigated [11]. This is written in a general way: a polyhedral 
surface homeomorphic to a disk composed of planar facets connected by 4-valency 
developable and flat-foldable vertices is rigid-foldable if and only if there exists a valid 
state where every foldline is semi-folded (not 0 or ±π). In other words, in this type of 
structure, the existence of a 
continuous transformation is 
equivalent to the existence of an 
intermediate state. This leads to the 
design method based on obtaining 
one valid intermediate state that 
satisfies the following: 

1. Every vertex is developable. 
2. Every vertex is flat-foldable 
3. Every facet is planar. 

The former two conditions can be represented as: 
 

 20    and 31   , (8) 

where θi (i = 0, 1, 2, 3) are the sector angles incident to the vertex. If we obtain one 
valid configuration represented by folding angles { ρi

0 }, the continuous transformation 
is represented by, 
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Figure 6: Single vertex of origami. 
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where t (0 ≤ t ≤ π ) is the parameter that defines the folding amount (t = 0, t = t0, and t = 
π indicate developed, the intermediate, and flat-folded states, respectively). 
Discrete Voss Surface: Discrete Voss surface is a planar quadrilateral mesh surface 
composed of degree-4 vertices each of which satisfies 
 

 20    and 31   . (10) 

The rigid-foldability of the discrete Voss surface is proved by Schief et al. [12]. Here, 
notice the similarity to Eq. (8). In fact, discrete Voss vertex and flat-foldable vertex are 
essentially identical in a local sense, 
and we can construct rigid-foldable 
hybrid surfaces by combining them. 
Figure 8 shows an example design 
of hybrid surface obtained by 
solving the combined conditions of 
discrete Voss and flat-foldable 
origami vertices via the 
perturbation-based method as used 
in [11]. 

Figure 8: Rigid folding motion of a generalized hybrid of Miura-ori and eggbox pattern. 

4.1 Cylindrical Structure: Topological Extension 
The rigid-folding motion of a disk surface is ensured by the existence of angle 
configuration that satisfies the local conditions around each vertex. However, a non-disk 
surface, such as a cylinder, cannot always rigid fold because of the conditions along the 
loop around each hole. The exact condition for rigid-foldable loop is not yet revealed in 
a general way. We thus start from obtaining a valid rigid-foldable cylinder based on 
symmetry, and then generalize them using the symmetry operations as proposed in [13]. 
In this proposition of rigid-foldable cylinders, repeating symmetry is used to construct a 
cylinder from a modular loop. However, we have recently found that a more generalized 
rigid-foldable cylindrical form can be created using the fact that the rigid folding 
condition is represented by the combination of local conditions and the loop conditions 
[14] (Figure 9). The design process is as follows: first, we produce a repeating form of 
cylinder using the isotropic type proposed in [13], which is composed of flat-foldable 
origami and discrete Voss vertices; then we fix one of the modules to construct a valid 
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Figure 7: Single vertex of discrete Voss surface.
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loop; finally, we transform the other part of the pattern under the constraints used to 
build the rigid-foldable quadrilateral mesh disk. 

Figure 9: Rigid foldable cylinder. 
 

5 Design Example 

The objective of our study is to generalize the 
geometric conditions required for kinetic structures, 
thereby enabling a system that a designer can find 
forms that sufficiently adapt the design context and 
required functionalities at the same time. We show a 
hypothetical design example of kinetic architectural 
space based on generalized degree-4 vertex origami to 
demonstrate how our approach can potentially useful 
for architectural design. 
Consider building a foldable space by connecting the openings of existing two separate 
buildings having different sizes and orientations as in Figure 10. Also, the distance 
between two buildings and the height of the openings are too large for the foldable 
structure to be made of flexible materials. Therefore, the static form of the structure 
must flexibly adapt the existing environment (the openings and the ground) while the 
structure must follow a rigid mechanism (rigid-foldable and flat-foldable). 
We solve this problem using the generalized rigid-foldable 4-valent origami. In this 
method, the problem is translated to a problem of obtaining a valid mesh represented by 
vertex coordinates x that satisfies 

1. developable: for each interior vertex,  23210   

2. flat-foldable: for each interior vertex, 03210    

3. planar: for each non-foldline edge, 0  

4. fixed boundary: for each vertex on the openings,    targettargettarget ,,,, zyxzyx   

5. ground: for each vertex on the boundary, 0z  

Let us represent these conditions as a non-linear vector equation c(x) = 0. We start from 
a known regular form of origami vault with 68 vertices as shown in Figure 11 (a), which 
is not a valid form (c ≠ 0). Then we modify this shape so that it satisfies the above 
conditions by optimization based approach (Newton-Raphson method) (Figure 11 (b)). 
From this valid solution, we can modify the form based on perturbation along the kernel 
of the Jacobian matrix. The method for obtaining an infinitesimal transformation is the 

height: 3.6m

height: 4.0m

16m

Figure 10: Layout. 
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same as the simulation method; however we allow the pattern itself to be changed in 
this case. 
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In this design example, the configuration is represented by 68 × 3 = 204 variables, while 
the developability, flat-foldability, and planarity conditions give 30 + 30 + 48 = 108 
equations, and the fixed boundary and ground conditions give 24 + 30 = 54 equations. 
Therefore, the design space is 42-dimensional, and we can explore the design variations 
within this space. By specifying ∆x0 via a graphical user interface, we obtained 
variational shapes that follow the designer’s preference, in this example we have chosen 
design (c). 

(a) (b) (c)

Figure 11: Design Process. (a) Initial regular pattern that does not connect the openings 
of two buildings shown in red. (b) Transformed pattern that fit the the openings. The 
boundary points shown in blue are placed on xy-plane. (c) Variational design that 
satisfies the conditions. 
 
The structure can be manufactured from double layered 
panels of constant thickness by sufficiently offsetting the 
boundary shape such that the panels do not collide each 
other by the folding motion (Figure 12) as presented in 
[15]. The cutting pattern of the panels is shown in Figure 
13. The perspective view of folding motion of the 
resulting structure is as shown in Figures 14 and 15. 
 

Figure 13: Panel layouts 
 

Figure 12: Thickening. 
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Figure 14: Folding motion of the structure. 
 

Figure 15: Perspective view. 
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6 Conclusion and Future Works 

In this paper, we presented geometric problems and their solutions for freely designing 
rigid-foldable structures. Based on the consideration on rigid-foldability, we presented 
two basic approaches: using triangles and quadrilaterals mesh. 

1. Triangular patterns produce kinetic structures whose degrees of freedom are 
determined by the number of elements on the boundary; using this fact we 
proposed the design concept of triangulated tripod.  

2. Quadrilateral patterns can produce one-DOF kinetic motion based on redundant 
constraints. Design of such a structure take advantage of the singularity of the 
pattern. We have shown an approach based on flat-foldable origami and discrete 
Voss vertices, which can sufficiently generalize flat-foldable disk and 
cylindrical surfaces. 

3. A design example using quadrilateral-based rigid origami is shown to 
demonstrate the high flexibility of the design method. 

At the same time, our study indicates many future studies necessary for making rigid 
origami structures more designable and realizable. The following shows some of the 
examples of such studies. 

1. The global kinetic behavior of the structures is not fully investigated. In 
particular, understanding the transformability from one state to the other is very 
important when applying rigid origami to engineering purposes.  

2. Classifying every rigid-foldable quadrilateral mesh is expected to improve the 
designabilty of rigid origami. This is still an open problem and theoretical 
studies in this direction can be seen in [15]. 

3. Investigating rigid-foldability condition around a loop can topologically extend 
the concept of origami. 

4. Enabling kinetic constraints to work with rigid origami structures can contribute 
to the design of rigid origami combined with different mechanical systems. 

 
References 

[1] Koryo Miura. Proposition of pseudo-cylindrical concave polyhedral shells. In 
Proceedings of IASS Symposium on Folded Plates and Prismatic Structures, 1970.  

[2] Ronald D. Resch and Hank Christiansen. The design and analysis of kinematic 
folded plate systems. In Proceedings of IASS Symposium on Folded Plates and 
Prismatic Structures, 1970.  

[3] Charles Hoberman. Curved pleated sheet structures. United States Patent No. 
5,234,727, 1993.  

[4] Tomohiro Tachi. Simulation of rigid origami. In Origami4: The Fourth 
International Conference on Origami in Science, Mathematics, and Education, 
pages 175–187. A K Peters, 2009.  



Proceedings of the International Association for Shell and Spatial Structures (IASS) Symposium 2010, Shanghai 
Spatial Structures – Permanent and Temporary 

November 8-12 2010, Shanghai, China 
 

[5] Sarah-Marie Belcastro and Thomas Hull. A mathematical model for non-flat 
origami. In Origami3: Proceedings of the 3rd International Meeting of Origami 
Mathematics, Science, and Education, pages 39–51, 2002.  

[6] Naohiko Watanabe and Ken-ichi Kawaguchi. The method for judging rigid 
foldability. In Robert Lang, editor, Origami4: The Fourth International Conference 
on Origami in Science, Mathematics, and Education, pages 165–174. A K Peters, 
2009.  

[7] Robert Connelly. A flexible sphere. The Mathematical Intelligencer, 1978; 
1(3):130–131. 

[8] Peter R. Cromwell. Polyhedra. Cambridge University Press, 1997.  

[9] Robert Connelly, I. Sabitov, and A. Walz. The bellows conjecture. Contributions to 
Algebra and Geometry, 1997; 38(1):1–10. 

[10] Alfred Brunner. Expansible surface structure. United States Patent 3,362,118, 
1965.  

[11] Tomohiro Tachi. Generalization of rigid-foldable quadrilateral-mesh origami. 
Journal of the International Association for Shell and Spatial Structures, 2009; 
50(3):173–179.  

[12] W. K. Schief, A. I. Bobenko, and T. Hoffmann. On the integrability of infinitesimal 
and finite deformations of polyhedral surfaces. In Discrete Differntial Geometry 
(Oberwolfach Proceedings), pages 67–93, 2007.  

[13] Tomohiro Tachi. One-DOF cylindrical deployable structures with rigid 
quadrilateral panels. In Proceedings of the IASS Symposium 2009, pages 2295–
2306, 2009.  

[14] Tomohiro Tachi. Freeform rigid-foldable cylinder using bidirectionally flat-
foldable surfaces, In Proceedings of the Conference Advances in Architectural 
Geometry 2010, 2010 (to appear). 

[15] Tomohiro Tachi. Rigid-foldable thick origami. In Proceedings of the 5th 
International Conference on Origami in Science, Mathematics and Education 
(5OSME), 2010. (to appear). 

[16] Hellmuth Stachel, A kinetic approach to Kokotsakis meshes, Computer Aided 
Geometric Design, 2010; 20:428-437. 


